В России разработали новый материал-светопреобразователь на основе редкоземельных металлов

Ученые Дальневосточного федерального университета (ДВФУ) и Института химии Дальневосточного отделения Российской академии (ДВО РАН),  применив метод молекулярного дизайна, создали материал на основе ионов европия (Eu III) – тяжелого редкоземельного металла. Используя его, можно увеличить КПД солнечных панелей и визуально определять места напряженности в других материалах.

Как рассказывают авторы проекта, новый материал со световыми «антеннами» в виде специальных молекул усиленно поглощает и испускает свет. Он может стать основой широкого спектра других соединений-светопреобразователей. Некоторые из них можно применять, чтобы увеличить КПД солнечных панелей, другие – использовать в виде добавок к твердым материалам, чтобы визуально наблюдать места наибольшего напряжения материала при нагрузках, — например, определять с высокой точностью наличие микротрещин на крыльях самолетов или в других деталях.  Результаты получены благодаря развиваемому в ДВФУ и ДВО РАН методу молекулярного дизайна. На основе большой базы знаний исследователи создают теоретическую модель и вносят изменения в молекулу, чтобы поменять или улучшить её свойства. Если они замечают в полученном «эскизе» что-то интересное, то проводят синтез и экспериментально подтверждают теоретическую модель.

— Мы идем от теории к практике, изучая электронную структуру химического соединения и детально разбираясь в механизме/причинах люминесценции комплексных соединений редкоземельных элементов (лантаноидов). Таких исследований мало, в силу сложности анализа. К слову, выходной файл расчета одного соединения занимает 20МБ, на одно вещество таких файлов приходится около 5. Один из интересных результатов, который наша команда получила при молекулярном моделировании лантаноидов — обнаружение механолюминесцентных свойств полученных соединений. Имея вид кристаллического порошка, они «реагируют» на попытку «раскрошить» кристаллы, испуская видимый свет или генерируя электрический ток.  Например, тонкое покрытие на крыле самолета позволит фиксировать образование микротрещин. Если добавить такой порошок в бетон, можно будет визуально фиксировать деформацию строительных сооружений, — отмечает один из авторов исследования, кандидат физико-математических наук Антон Шурыгин, сотрудник Центра фундаментального материаловедения ДВФУ и ДВО РАН.

Ионы Eu (III) — самые «яркие», их используют для светотрансформирующихся покрытий. Такие покрытия поглощают широкий спектр солнечного излучения и испускают видимое излучение строго определенной длины волны. Например, покрытия на основе европия испускают свет с длиной волны 614 нм, цвет излучения при этом оранжевый.

Исследователи в шутку называют европий чемпионом люминесценции. При этом существуют еще 14 элементов-лантаноидов (редкоземельных металлов) со свойствами, недоступными для европия и наоборот. Например, в работе по результатам изучения комплекса нитратов, где менялся лишь центральный ион отмечается, что такие ионы как церий, неодим, эрбий и иттербий меняли области применения комплекса. Так, нитрат церия можно применять как добавку, ускоряющую рост растения Anoectochilus roxburghii (драгоценных орхидей).

На следующем этапе ученые планируют добавить к соединениям редкоземельных элементов переходные металлы (например, цинка), для получения гетерометаллических комплексов. Это позволит достигнуть большей фотостабильности и расширить физико-химические свойства получаемой структуры.

По материалам Дальневосточного федерального университета

ПОДЕЛИТЬСЯ В СОЦСЕТЯХ: